Competence in Solids

MaxxFlow HTC

Measurement of high mass flow rates for bulk solids

Page

CONTENTS

1.	System Overview	3
2.	Functionality	3
3.	Safety	4
	3.1 Normal Use	4
	3.2 Identification of Hazards	4
	3.3 Operational Safety	4
	3.4 Technical Statement	4
4.	Mounting and Installation	ō
	4.1 Supplied Equipment	ō
	4.2 Required Tools	ō
	4.3 Mounting of the Sensor	ō
	4.4 Overview of Connections between Sensor and Transmitter	7
	4.5 Use in Ex Hazardous Areas	3
5.	Electrical Connection	9
	5.1 Version Field Housing	9
	5.2 Version 19" Rack Mounted Transmitter 10)
	5.3 Version DIN Rail Transmitter	1
6.	Commissioning	2
7.	Standard Indication of MaxxFlow HTC14	4
	7.1 Transmitter with Display	4
	7.2 PC-Software	5
8.	Structure Main Menu MaxxFlow HTC 16	3
9.	Using the PC-Software	3
10.	System Adjustments in Detail	C
11.	Connection Examples	9
12.	Maintenance)
13.	Warranty 30)
14.	Trouble Shooting)
15.	Technical Data	1

1. System Overview

<image>

A MaxxFlow HTC measuring system consists of:

2. Functionality

- MaxxFlow HTC is a measuring system especially developed for the measurement of high mass flow rates in free fall applications.
- MaxxFlow HTC works with the latest microprocessor technology. By special capacitive coupling of an electromagnetic wave, a homogeneous measuring field is created inside the sensor.
- The electromagnetic wave inside the sensor interacts with the solid particles. The signals are evaluated regarding frequency and amplitude.
- The speed measurement is implemented by correlation. Two sensors are capturing the correlation signals.
- The measuring unit consists of the sensor (measuring pipe) and the transmitter.

Fig. 2: Coupling of the electromagnetic waves

3. Safety

The MaxxFlow HTC was designed, built and tested for safety and is shipped in this condition. Components within the supplied system could be hazardous if not unpacked, installed, connected and commissioned by authorised and qualified persons. All operating instructions must be read and understood before handling the system. Failure to do so will cause the warranty to be revoked.

3.1 Normal Use

- The measuring system must be installed for measuring mass flow rate only. Other usage or modifications of the measuring system are not permitted.
- Only original spare parts and accessories of SWR engineering must be used.

3.2 Identification of Hazards

• Possible hazards when using the measuring system are marked by the following symbols:

\bigwedge

Warning! This sy

This symbolises a situation where personal safety is at risk if used in an improper manner.

Attention! • This sy

• This symbolises the possible damage to the system, if used in an improper manner.

3.3 Operational Safety

- The measuring system must be installed by trained and authorised personnel only.
- In case of maintenance-work on the pipe or on components of the MaxxFlow HTC, make sure that the piping is in unpressurized condition.
- Switch off the supply voltage for all maintenance, cleaning or inspection works on the sensor or on components within the MaxxFlow HTC. Follow the notes of the chapter maintenance.
- The components and electrical connections must be checked for damages regularly. If a damage is found it is to be repaired before further operation of the instruments.

3.4 Technical Statement

• The manufacturer reserves the right to change any technical data without prior notice. If any queries arise SWR engineering will be happy to inform customers of any possible changes made.

4. Mounting and Installation

4.1 Supplied Equipment

- Transmitter in field mounted enclosure, 19" rack version or DIN rail enclosure
- Sensor
- Operating Instructions

4.2 Required Tools

- Appropriately sized spanner or ring spanner
- Tools for electrical connections

4.3 Mounting of the Sensor

The sensor has to be mounted as follows:

- Select a location on the pipe, vertical or inclined locations. Ensure that the connection box cable glands are pointing downwards.
- Ensure that the correct distance is selected from control devices, e. g. rotary valves, etc. As this will determine velocity criteria, (see fig. 3).

Fig. 3: Minimal distances of the sensor to control devices

Installations in angular pipes are as well possible. If you are unsure contact SWR staff.

Attention!

Before installation check that flange alignment is correct and there is no residual debris within the sensor.

Fig. 4: Mounting of the measuring tube

• Depending on cable on size, the maximum distance between sensor and transmitter is 300 m.

Fig. 5: Transmitter

4.4 Overview of Connections between Sensor and Transmitter

Fig. 6: Wiring of the sensor pipe and transmitter

Depending on cable cross sectional area, the maximum distance between sensor and transmitter is 300 m. A four (4) core shielded cable should be used.

4.5 Use in Ex Hazardous Areas

Marking DustEx:

⟨Ex⟩ II 3D Ex tD A21 Zone 22: 0 °C ≤ Tprozess ≤ 80 °C

- Equipment group: 2
- Equipment category: 3
- For combustible mixtures of air and dust
- IP 65
- Maximum surface temperature 84 °C with Ta = 60 °C

Marking GasEx:

⟨Ex⟩ II 3G Ex e IIC T4

- Equipment group: 2
- Equipment category: 3
- Zone 2
- For combustible mixtures of air and gas
- Allowable process temperature 0 to 80 °C
- Temperature class, T4
- Maximum surface temperature 84 °C with Ta = 60 °C

5. Electrical Connection

5.1 Version Field Housing

Fig. 8: Electrical Connection

Transmitte	Transmitter				
Terminal	Terminal No. Connection				
Connectio	Connection of the power supply				
L / +24 V		Input power supply 230 V/50 Hz, 110 V/6	60 Hz (optional 24 V DC)		
N / 0 V		Input power supply 230 V/50 Hz, 110 V/6	60 Hz (optional 24 V DC)		
PE		Protective Earth			
Connectio	ons				
lin 1	Na	not available			
1-111 1	Na	not available			
1	+	Current Output 4 20 mA +	F law		
I-out I	-	Current Output 4 20 mA - (GND)	Flow		
L aut 0	+	Current Output 4 20 mA +	Density		
I-out 2	-	Current Output 4 20 mA - (GND)	Density		
	+	Current Output 4 20 mA +			
1-0ut 3	-	Current Output 4 20 mA - (GND)	Velocity		
A I a a a	NO	Isolated Relay Contact NO (make contact)			
Alarm	С	Isolated Relay Contact COM (common contact)			
Nelay	NC	Isolated Relay Contact NC (break contact)			
Dout	+	Digital Output (+)			
D-out	-	Digital Output (-)			
	Α	RS 485 Interface Data A (+)			
RS 485	В	RS 485 Interface Data B (-)			
	GND	RS 485 Interface Ground			
D in 1	+	Digital Interface 1 (+)			
D-III I	-	Digital Interface 1 (-)	Digital Interface 1 (-)		
D in 2	+	Digital Interface 2 (+)	Digital Interface 2 (+)		
D-III Z	-	Digital Interface 2 (-)			
	+	Power supply 24 V (+)	Cable No. 1		
	-	Power supply GND	Cable No. 2		
Sensor	Α	RS 485 Data A	Cable No. 3		
	В	RS 485 Data B	Cable No. 4		
	Shield	Shield	Shield		

19" Rack Mounted Transmitter а С +24V ——— 2 In _ 4 0V 6 ___ 8 RS 485 A (+) Sensor RS 485 A (+) -- 0 - 10 -_ Sensor RS 485 B (-) RS 485 B (-) Relay COM -Relay NO Output 1 Flow Rate (+) - - - - 16 -I-out 1 (-) Output 2 Density (+) -I-out 2 (-) Output 3 Velocity (+) - - - 20 -I-out 3 (-) Digital Input 1 (-) Digital Input 1 (+) Digital Input 2 (+) - 24 -Digital Input 2 (-) Impulse Output (+) - 26 -Impulse Output (-) 28 +24V -Out – PE _____ 32 0V —

5.2 Version 19" Rack Mounted Transmitter

Transmitter			
Terminal		Function	
Connection of Power Supply			
+ 24 V DC	2 a/c + 4 a/c	Input Power Supply + 24 V DC	
0 V GND	6 a/c + 8 a/c	Input Power Supply GND	
PE	30 a/c	Protective Earth	
Terminals			
RS 485	10 a	RS 485 Interface Data A (+)	
System / PC	12 a	RS 485 Interface Data B (-)	
D-I NO	14 a	Relay Contact 1	
Relay NO	14 c	Relay Contact 2	
	16 a	4 20 mA I-out 1 (-)	
Current Output I Flow Rate	16 c	4 20 mA I-out 1 (+)	
	18 a	4 20 mA I-out 2 (-)	
Current Output 2 Density	18 c	4 20 mA I-out 2 (+)	
	20 a	4 20 mA I-out 3 (-)	
Current Output 3 velocity	20 c	4 20 mA I-out 3 (+)	
Divite lawy 1	22 a	Dig. In 1 (-)	
Digital input i	22 c	Dig. In 1 (+)	
Disital lase t 0	24 a	Dig. In 2 (-)	
Digital input 2	24 c	Dig. In 2 (+)	
January Jane Outrast	26 a	Dig. Out (-)	
Impulse Output	26 c	Dig. Out (+)	
	28 a/c	Output Power Supply 24 V DC	
Sama a Campantiana	32 a/c	Output Power Supply 0 V GND	
Sensor Connections	10 c	Output RS 485 Interface Data A (+)	
	12 c	Output RS 485 Interface Data B (-)	

5.3 Version DIN Rail Transmitter

9 not available	10 not available	RS 485- Interface data B	RS 485- Interface data A
13 Sensor connection cable 4 RS 485 data B	Sensor connection cable 3 RS 485 data A	15 Sensor connection cable 2 Power supply 0 V	16 Sensor connection cable 1 Power supply + 24 V

6. Commissioning

Please check again:

- That all connections between the sensor and transmitter are correct.
- That the sensor is correctly installed.
- If there are problems at this stage, please contact your local distributor or SWR directly.
- Apply power to the system. Wait for a warm up period of fifteen (15) minutes before starting any adjustments.

There are different possibilities to commission MaxxFlow HTC:

Nearly every MaxxFlow application is based on free falling or sliding material, so the velocity could be assumed as a constant. Therefore it is recommended to use the fixed velocity option because this will be the most reliable operation mode.

a. calibration via full-adjusting

Switch on fixed velocity option and ensure that RMS-A (root mean square of velocity signal A) is higher than NST (no signal threshold) during flow condition.

If necessary proceed a zero calibration, than fill up the sensor with material and proceed a full calibration (Menu 2.1.3). Assumed the falling height has been set correctly (Menu 1.7), this should result in a real flow indication now. If there is still some deviation adjust the flow value from now on with the calibration factor.

Zero calibration: Start zero-point calibration (Menu 2.1.1) in no-flow condition with empty pipe. Insure that the pipe is really empty.

b. Calibration via calibration factor and reference

Switch on fixed velocity option and ensure that RMS-A is higher than NST during flow condition. If necessary proceed a zero calibration.

It is not necessary to proceed any full calibration or flow calibration, you are able to work with the factory setting. For calibration you only have to adjust the calibration factor (Menu 2.2) according to a comparison of a reference value with the flow indication. The calibration factor could be calculated using this formula:

Reference value

 $\frac{1}{MaxxFlow HTC indication} x actual calibration factor = new calibration factor$

c. Calibration via working point

Switch on fixed velocity option and ensure that RMS-A is higher than NST during flow condition. If necessary proceed a zero calibration.

For this kind of calibration you need 2 measuring points. Measuring point 1 must be the zero point, Measuring point 2 would be the working point (Menu 2.1.2).

The working point should be set while a stable operating flow is given and the flow value is known. After later weighing this value can be adjust via the corrector factor.

Basic function	At least a two-point-calibration (normally zero and max) is sufficient for the density measurement. The velocity measurement, if used in fact, is firmly defined as an absolute measurement by the distance of the sensor plates and does not have to be calibrated.
Zero-point	Start zero-point calibration in no-flow condition with empty pipe. Insure that the pipe is really empty.
Operating-point	Start operating-point calibration during flow condition with known flow value. It is possible to edit this value at a later time.
Analog output 1	Current output flow rate. The measuring range is adjusted in menu point 3.1.1. 0 = 4 mA Max = 20 mA
Analog output 2	Current output density. The measuring range is adjusted in menu point 3.2.1. 0 = 4 mA Max = 20 mA
Analog output 3	Current output speed. The measuring range is adjusted in menu point 3.3.1. 0 = 4 mA Max = 20 mA
Filter	The filter values visible in the analog output configuration are used to smooth the continuous analogue output trend.

7. Standard Indication of MaxxFlow HTC

7.1 Transmitter with Display

The standard display shows the actual flow rate as well as measuring values of density, velocity and the totaliser value.

With four touch screen buttons, further indication and configuration information is available:

- **R** Reset totaliser, choose OK or NO
- **D** Density, further informations about density measurement, back with **M** (mass flow)
- **V** Velocity, further information about speed measurement, back with **M** or press **S** (speed) for velocity configuration.

S V-Adjustment, various settings for speed measurement.

1. Threshold

It defines the noise level of the RMS values (root mean square values) of the velocity signals.

All values below will be ignored for speed measurement resp. with activated fix-velocity the output will switch to 0 m/s.

Possible values 1 - 65535, cancel with E (ESC)

- 2. Display of the actual RMS value of velocity signals
- 3. Fix-velocity

Setting of fix-velocity value, this will replace automatically the parameter falling height.

Possible values 1 - 99.99, cancel with E (ESC)

4. Vfix

Fix-Velocity On / Off

T Displays the temperature of the sensor electronics.

V-Adjustment Threshold 230		7	8	9
		4	5	6
		1	2	3
Eff-Value =	135	Ε	0	┙

V-Adjustment	7	8	9
	4	5	6
2.30	1	2	3
	Ε	0	Ļ

7.2 PC-Software

For systems without display a PC-Software is available. The default display showing is represented here by the online representation.

MDS-Control Device Configura	tion Program			
Interface COM 4 - Device address 1 - Baud rate 9600 -	Measurement Calibration Oup	tuts <u>A</u> larm <u>D</u> igital inputs MaxxFlow		
Read device Device program	1.2 Unit 1.3 Time Scale 1.4 Decimal Point 1.5 Density	t		
Overwrite calibration On-Line representation	1.6 Aperture 1.7 Drop Height	Mass Flow Speed Density	65.6 [t/h] 4.96 [m/s]	
Data-logger settings Sample rate 1/s • File name		Totalizator		Reset
Save configuration Load configuration Print configuration		Interface status: Connected		
Version 1.02	Device software version: 1.08	anguage: English MaxFlow		

The basic settings for using the software are described in a later chapter.

In the following the menu navigation via display will be describe. These menu points are the same like in the PC-Software, so the using is derives therefrom.

8. Structure Main Menu MaxxFlow HTC

Switch to main menu: Press any pad of the touchscreen for about a few seconds until the menu appears.

1. Measurement

2.

1.1 Ta	g	Name (10 characters)	
1.2 Ur	nit	Select: g / kg / t	
1.3 Tiı	me Unit	Select: h / min / s	
1.4 De	ec. Point	Position of dec. point	
1.5 De	ensity	Range 1 3000 g/l	
1.6 Ap	perture	Range 10 300 mm	
1.7 Dr	op Height	Range 10 9999 mm	
Calibra	ation		
2.1	Sensor Calibration	Adjusting the measured value to material and mounting situation.	
	2.1.1 Zero Point	for the empty sensor	
	2.1.2 Operating Point	with material flowing	
	2.1.3 Full Calibration	with filled sensor	
2.2	Current Input	Adjustment of current input for external correction	
	2.2.1 Calibration 4 mA	Factory setting, no adjustment required	
	2.2.2 Calibraton 20 mA	Factory setting, no adjustment required	
2.3	Factor	Correction factor density, Range 0.01 9.99	
2.4	Interpolation Points	Amount of interpolation points for linearization (max. 3)	
2.5	Interpolation Table	Linearization characteristic	
2.6	Min. Load	Suppression of conveying dropouts during auto acquisition	
2.7	Interpolation Point 1		
	2.7.1 Raw Value	Non-linearized flow rate	
	2.7.2 Calibrated Value	Linearized flow rate	
	2.7.3 Auto Acquisition	Automatic calibration with a weighed mass	

2.8 Interpolation Point 2

Same as interpolation point 1

3. (Dutputs
------	---------

Outp	outs	
3.1	Flow	Rate
	3.1.1	at 20 mA
	3.1.2	Filter
	3.1.3	Calibration 4 mA output
	3.1.4	Calibration 20 mA output
3.2	Densi	ity
	3.2.1	at 20 mA
	3.2.2	Filter
	3.2.3	Calibration 4 mA output
	3.2.4	Calibration 20 mA output
3.3	Veloc	ity
	3.3.1	at 20 mA
	3.3.2	Filter
	3.3.3	Calibration 4 mA output
	3.3.4	Calibration 20 mA output
3.4	Alarm	1
	3.4.1	Туре
	3.4.2	Value
	3.4.3	Delay
	3.4.4	Hysteresis
	3.4.5	Output
	3.4.6	Mode

- 3.4.7 Sensor alarm
- **Impuls Output** 3.5
 - 3.5.1 Pulse / Mass

Digitale Inputs 4.

- 4.1 **Digital Input 1**
 - 4.1.1 Function
 - 4.1.2 Direction
 - 4.1.3 Filter
- 4.2 **Digital Input 2**
 - 4.2.1 Function
 - 4.2.2 Direction
 - 4.2.3 Filter

5. System

- 5.1 **Baud Rate**
- 5.2 Address
- 5.3 Contrast
- 5.4 Language

End of measuring range Range: 0.1 --- 99.9 s (Standard: 1 s) Factory setting, no adjustment required Factory setting, no adjustment required Select: density or velocity End of measuring range Range: 0.1 --- 99.9 s (Standard: 1 s) Factory setting, no adjustment required Factory setting, no adjustment required Select: density or velocity End of measuring range Range: 0.1 --- 99.9 s (Standard: 1 s) Factory setting, no adjustment required Factory setting, no adjustment required

Select: Minimum or maximum alarm Flow value triggering an alarm Range: 0.1 --- 99.9 s Threshold for resetting the alarm Select alarm: Alarm or sensor busy Select relais mode: NO / NC Select: ON / OFF

Desired number of pulses per mass unit counted by the totalizer

Selection of function none / zero adjustment / full adjustment Select: direct / inverted

Range: 0.1 --- 99.9 s

Selection of function none / zero adjustment / full adjustment Select: direct / inverted Range: 0.1 --- 99.9 s

Select: 4800 / 9600 / 19200 / 38400 Range: 1 --- 250 Contrast adjustment

Select: D / F / E

MDS-Control Device Configuration Program						
Interface COM 4 -	tterface COM 4 - Measurement Calibration Ouptuts Alarm Digital inputs					
Device address 1 - Baud rate 9600 -	1.1 Tag No. 1.2 Unit	MaxxFlow t				
Read device	1.3 Time Scale	h 💌				
Device program	1.4 Decimal Point 1.5 Density	000.0 🔽 1000 [g/l]				
Cverwrite calibration	1.6 Aperture	200 [mm]				
	1.7 Drop Height	458 [mm]				
On-Line representation Data-logger settings Sample rate 1/s File name Save configuration Load configuration Print configuration						
Version 1.02	Device software version: 1.08	Language: English	MaxFlow			

9. Using the PC-Software

Interface	Choice of the serial interface in the PC (COM 1 COM 12)
ModBus address	Address of the appealed transmitter in the ModBus (1 255)
Baud rate	Information of the Baud rate for serial communication (4800 / 9600 / 19200 / 38400 Bd - Standard 9600 Bd)
Device read	All parameters are read from the transmitter linked with the PC and are shown.
Device program	The changed parameters are written in the transmitter and are stored there.
	Without putting of the brand calibration headline, if all changes are taken over without calibrating data in menu point 4.
	With putting of the brand calibration headline, if the changes of the calibrating data from menu 4 are also sent to the transmitter.

Online-representation	Online-representation of the measuring values on the PC:		
	Mass Flow:	Announcement of the measuring value in phys. units.	
	Speed:	Notification of the fix- or the real-speed.	
	Density:	Announcement of the measuring density in phys. units.	
	Totalizator:	Throughput counter as a calibrating aid.	
	Reset:	Put back of the totalizer on 0.	
	Data-logger on:	After the input of a file name and the choice of the memory rate, the data are stored in the CSV format. Afterwards these data can be worked on with Excel or a similar program and be analyzed.	

MaxFlow Online				
Mass Flow	65.6	[t/h]		
Speed	4.96	[m/s]		
Density	117	[g/l]		
Totalizator	1.1	[t]	Reset	
Data-logger on Close window				
Interface status: Connected			11.	

Data-logger setting	Information of the memory rate 1/s, 20/s, 10/min for saving data.
	For using data-logger it is necessary to set a file name before.
File name	Set file path and name for saving the CSV data.
Save configuration	Save hole configuration of the transmitter on the PC.
Load configuration	Load configuration for transmitter which is stored on PC.
Print configuration	Print the actual configuration of the transmitter in table format.
Language	With pressure the right mouse key on Language in the lowest task strip, appears the linguistic choice: D / F / E .

10. System Adjustments in Detail

1. MEASUREMENT

1.1 Tag 1.2 Unit	Freely selectable notation, max. 10 characters. With $$ and \oiint select characters, with \biguplus and \oiint select place of the character (110); with $$ delete the respective character, with $$ leave without changes, and with \biguplus confirm and leave the menu level.	Measurement Tag MaxxFlow	← → C	 ↑ ↓ E ↓ ↓
	With $\textcircled{1}$ and $\textcircled{2}$ select according to the display, with $\fbox{0}$ leave the menu without any change, with $\rightleftarrows{0}$ confirm and leave the menu level.	t		• C +
1.3 Time Unit	Select of the time unit - Choose: h / min / s / s per second / min per minute / h per hour With ↑ and ↓ select the time unit with C leave the menu without any change, with ← confirm and leave the menu level.	Measurement Time Scale h		 ↑ ↓ C ↓
1.4 Decimal Point	Adjust the decimal place in the display. With 1 and 1 select according to the display, with C leave the menu without any change, with 1 confirm and leave the menu level.	Measurement Range Decimal Point 000.0		 ↑ ↓ C ↓
1.5 Density	Set bulk density in g/l (= kg/m ³), possible range 1 to 3000 g/l. Enter the value, with C leave the without changes, with c confirm and leave the menu level.	Measurement Bulk Density 1250 g/l E	8 5 2 0	9 6 3 ↓

1.6 Aperture		Measurement	7	8	9
	Set value of inner pipe diameter.	Aperture	4	5	6
	Enter the value, with \boxed{E} leave without	150	1	2	3
	changes, with 🖵 confirm and leave the		Е	0	⊢
1.7 Drop Height		Measurement	7	8	9
1 7 Dron Height					
	Enter drop height, this will calculate fixed- velocity value automatically	Drop Height	4	5	6
		265 mm	1	2	3
	Enter the value, with 上 leave without changes, with 🖵 confirm and leave the		Е	0	┙
	menu level				

2. CALIBRATION

2.1 Sensor Calibration

2.1.1 Zero Point

Insure that the pipe is empty. Start zero adjustment with OK. Cancel with NO.

Zero Point Calibration in Pro	ogress	
Range	7	
Offset	378	
Density	22	

2.1.2 Operating Point

Enter known flow rate.

Enter the value, with \boxed{E} leave without changes, with \boxed{E} confirm and go to the next window.

Change filter value with \fbox , confirm adjustment values with \bigstar .

Display during calibration procedure.

Operating Point Adjustment at		C L	
57 t/h			
Raw Valu	e =	101	
Filter	=	10 s	Z

Operating Calibration	Point n in Progress
Density	782

2.1.3 Full Calibration

Calibration with 100 % filled pipe in no-flow condition.

Set full calibration with OK . Cancel with NO .

2.2 Current Input

2.3 Factor

2.2.1 Calibration 4 mA

2.2.2 Calibration 20 mA

Correction factor affects directly the density
measurement.
0.01 to 9.99
Default 1.0
Enter the value, with E leave without
changes, with 🖵 confirm and leave the
menu level.

2.4 Interpolation Points

Set amount of required interpolation points; maximum 3 points are possible.

Enter the value, with $\ensuremath{\mathbb{E}}$ leave without changes, with [] confirm and leave the menu level.

2.5 Interpolation Table

Display of the calibrated points. Back with E.

2.6 Min. Load

Suppresses conveying breaks during Auto Acquisition.

Enter the value, with E leave without changes, with $\overleftarrow{\mu}$ confirm and leave the menu level.

Full Point Calibratio	n in Progress	
Density	782	

Current Input Calibration 4 mA	
511	С
Akt.: 0	4

Current Input Calibration 20 mA	
511	С
Akt.: 0	┙

Calibration Factor	7	8	9
	4	5	6
1.0	1	2	3
	Ε	0	┙

Interpolation Points	7	8	9
Points	4	5	6
2	1	2	3
	Ε	0	┙

Interpo	lation Tabl	le	
	raw	calibrated	
1.	57	57 t/h	
2.	84	84 t/h	
			E

Calibration Min_Load	7	8	9
10.0%	4	5	6
10 %0	1	2	3
	E	0	┙

2.7 Interpolation Point 1

2.7.1 Raw Value

Manual interpolation. This is the non-linearized flow value.

Enter the value, with \boxed{E} leave without changes, with \boxed{e} confirm and leave the menu level.

2.7.2 Calibrated

Manual interpolation. Linearized flow value.

Enter the value, with E leave without changes, with C confirm and leave the menu level.

2.7.3 Auto Acquisition

Enables a calibration by means of a weighed mass. The collection of data starts with entering this menu point, but only flow rates above the min. load value will be counted.

Finish with \bigcirc , enter the conveyed mass and confirm with \bigcirc . Press \boxdot to leave menu point without any changes.

Interpolation Point 1 Raw Value	7	8	9
	4	5	6
57 011	1	2	3
	E	0	┙

Interpolation Point 1	7	8	9
E7 +/b	4	5	6
57 t/h	1	2	3
	Ε	0	┙

Auto Acquisition Button [C] break Button [ENTER] finish Collected Data: 276 pr	obes		
С	┙]	
Charged	7	8	9
Amount	4	5	6
F7 +	-	-	-
57 t	1	2	3

2.8. / 2.9 Interpolation point 2 / 3 same as point 1

3. OUTPUTS

3.1 Output 1 Flow Rate

3.1.1	at 20	mA
-------	-------	----

Enter end of measuring range, this will comply to 20 mA.

Enter the value, with \boxed{E} leave without changes, with \boxed{e} confirm and leave the menu level.

3.1.2 Filter

Adjustable damping for the flow rate. Range: 0.1 . . . 99.9 s (Standard 1 s)

Enter the value, with $[\underline{E}]$ leave without changes, with $[\underline{H}]$ confirm and leave the menu level.

Flow Rate	7	8	9
Value at 20 mA			
100 t/b	4	5	6
100 011	1	2	3
	Е	0	Ļ

Flow Rate Filter	7	8	9
10 e	4	5	6
1.0 5	1	2	3
	E	0	┙

3.1.3 Calibration 4 mA

All current outputs were calibrated at the factory.

If necessary recalibration with multimeter is possible.

With << and >> adjust fast, with < and

> adjust slowly the current to 4 mA. With \leftarrow confirm and leave the menu level, with \boxed{C} leave the menu without any change.

3.1.4 Calibration 20 mA

All current outputs were calibrated at the factory.

If necessary recalibration with multimeter is possible.

8 9

5 6

2 3

0 ←

8 9

5 6

2 3

0 ←

With < and >> adjust fast, with < and

> adjust slowly the current to 4 mA. With \square confirm and leave the menu level, with \boxed{C} leave the menu without any change.

3.2. Output 2 Density

3.2.1	at 20 mA	Enter end of measuring range, this will comply to 20 mA. Enter the value, with E leave without changes, with I confirm and leave the	Density Value at 20 mA 500 g/l	7 4 1 E
3.2.2	Filter	menu level.	Density	7
		Adjustable damping for the density. Range: 0.1 99.9 s (Standard 1 s)	Filter 1.0 s	4
		Enter the value, with \boxed{E} leave without changes, with \overleftarrow{e} confirm and leave the		E

3.2.3 Calibration 4 mA

All current outputs were calibrated at the factory.

menu level.

If necessary recalibration with multimeter is possible.

With \leq and > adjust fast, with \leq and

> adjust slowly the current to 4 mA. With \leftarrow confirm and leave the menu level, with \boxed{C} leave the menu without any change.

> |>>

С

3.2.4 Calibration 20 mA

All current outputs were calibrated at the factory.

If necessary recalibration with multimeter is possible.

With $<\!\!<$ and $>\!\!>$ adjust fast, with $<\!\!<$ and

> adjust slowly the current to 4 mA. With ← confirm and leave the menu level, with C leave the menu without any change.

Density

<< | <

Calibration 20 mA

3.3 Output 3 Speed

3.3.1 at 20 mA

Enter end of measuring range, this will comply to 20 mA.

Enter the value, with $[\underline{E}]$ leave without changes, with $[\underline{H}]$ confirm and leave the menu level.

Speed	7	8	9
10 m/o	4	5	6
10 m/s	1	2	3
	E	0	Ъ

Adjustable damping for the velocity. Range: 0.1 . . . 99.9 s (Standard 1 s)

Enter the value, with \boxed{E} leave without changes, with $\boxed{-}$ confirm and leave the menu level.

Speed Filter	7	8	9
100	4	5	6
1.0 5	1	2	3
	E	0	Ļ

3.3.3 Calibration 4 mA

All current outputs were calibrated at the factory.

If necessary recalibration with multimeter is possible.

With \leq and \geq adjust fast, with \leq and \geq adjust slowly the current to 4 mA. With \leftarrow confirm and leave the menu level, with \bigcirc leave the menu without any change.

3.3.4 Calibration 20 mA

All current outputs were calibrated at the factory.

If necessary recalibration with multimeter is possible.

> adjust slowly the current to 4 mA. With \leftarrow confirm and leave the menu level, with \boxed{C} leave the menu without any change.

┙

3.4	ALAR	М				
	3.4.1	Туре	Upper and lower limit value. Affects relays. With and select according to your significance, with leave the menu without any change, with confirm and switch to a deeper menu level.	Alarm Alarm type Maximum	-	 ↑ ↓ C ↓
	3.4.2	Value of Alarm	Flow value for the alarm. With \boxed{E} leave the menu without any change, with $\overrightarrow{\mu}$ confirm and leave the menu level.	Alarm 7 Value of Alarm 4 90 t/h 1 E	8 5 2 0	9 6 3 ↓
	3.4.3	Delay	Threshold value how long the value must be over or under the limit until the alarm relay reacts. Range: 0.1 99.9 s With C leave the menu without any change, with confirm and leave the menu level	Alarm Delay 1.0 s 1 E	85	9 6 3 4
	3.4.4	Hysteresis	Threshold for resetting the alarm. Range: 0 500 t/h With \boxed{E} leave the menu without any change, with \boxdot confirm and leave the menu level.	Alarm Hysteresis 85 t/h E	8 5 2 0	9 6 3 ~
	3.4.5	Output	Alarm / calibration active Selection of signalisation mode using the relay either as "Alarm" or "Sensor busy" for auto calibration unit. With ♠ and ♣ select according to the displa any change, with ➡ confirm and leave the ma	Alarm ^{Output} Alarm y, with <u>C</u> leave the menu enu level.	u wit	↑ ↓ C ↓
	3.4.6	Mode	Choice of the contact work or interruption. NO - Working current NC - Static current	Alarm Operation Mode NO		↑ ↓ C

With 1 and 1 select according to the display, with C leave the menu without any change, with 1 confirm and leave the menu level.

3.4.7 Sensor Fault

On / Off Affects to alarm relay.

With 1 and 2 select according to the display, with \fbox{C} leave the menu without

any change, with \leftarrow confirm and leave the menu level.

3.5 Pulse Output

The pulse output is potential free (optocoupler), wiring see page 29.

3.5.1 Amount of Pulses / Mass Unit

Type desired number of pulses per mass unit. This should not exceed 50 Hz.

Input with the count keyboard. With E leave the menu without any change, with $| \leftarrow |$ confirm and leave the menu level.

DIGITAL INPUTS 4.

The digital inputs are potential free (optocoupler), wiring see page 29.

4.1 Digital Input 1

4.1.1 Function

Digital input for a trigger signal to start zero or full calibration. Select input function. None / S-Zero / S-Full

Possibility to start calibration with an external signal. With \uparrow and \downarrow select according to the

without any change, with \leftarrow confirm and leave the menu level.

4.1.2 Direction Digital Input 1 Direct / Inverted Direction direct With \uparrow and \checkmark select according to the display, with C leave the menu without any change, with \square confirm and leave the menu level. 4.1.3 Filter Idle time after activation.

> With E leave the menu without any change, with \leftarrow confirm and leave the menu level.

Digital Input 1	7	8	9
	4	5	6
0.0 \$	1	2	3

Е 0

Alarm	_ ↑
Sensor Fault	÷
on	С
	Ļ

Pulse Output	7	8	9
10.00	4	5	6
10.00	1	2	3
	Е	0	┙

Function	+	
S-Full		
	Ļ	
display, with C leave the menu		

↑ ||

₳

Ŧ

С

Digital Input 1

5. SYSTEM

5.1 Baud Rate	Baud Rate Setting Select: 4800 / 9600 / 19200 / 38400 With and select Baud Rate, with leave the menu without any change, with confirm and leave the menu level.	System Baud Rate 9600		 ↑ ↓ C ↓ 	
5.2 ModBus-Address	Set 1 250 With E leave the menu without any change, with ← confirm and leave the menu level.	System Address 1	7 8 4 5 1 2 C (3 9 5 6 2 3) ←	
5.3 Contrast	Display contrast for a better legibility. With << and >> adjust fast, with < and adjust slowly to the required contrast. With <- confirm and leave the menu level, with C leave the menu without any change.	System Contrast	>>>	C	
5.4 Language	Language selection. Choose: D / F / E With ♠ and ➡ select language, with C leave the menu without any change, with ➡ confirm and leave the menu level.	System Language D		↑ ↓ C	

11. Connection Examples

11.1 Digital Input

11.2 Impulse Output

12. Maintenance

Beware of live terminals when opening enclosure.

- Ensure power is disconnected before undertaking any maintenance.
- Repairs and maintenance must only be carried out by trained authorised persons.

13. Warranty

Warranty is for one (1) year. It starts from the delivery date. The warranty is valid as long as the system has been installed and commissioned according to the Operating Instructions and there is no sign of any wear or mechanical damage.

In the case of defects during the warranty period, all defective components will be repaired / replaced. The parts that are replacing the defective parts, remain the property of SWR. If the costumer requires the warranty work to be executed at their premises, then the costumer will pay for costs of the SWR engineer to be on their site.

SWR is not responsible for any damage to the customer's process and is not responsible for any loss of profit due to that damage.

14. Trouble Shooting

Warning!

The electrical installation must be carried out by qualified, authorised persons.

Problem	Cause	Solution
System does not operate.	No power.	Check power supply.
	Cable break.	Check for continuity.
	Defective device.	Replace fuses in enclosure.
Outputs are the wrong values.	Incorrect calibration.	Re calibrate the system.
Sensor error.	Sensor connections incorrect.	Check wiring connections.
	Sensor failure.	Replace sensor.

Do not open sensor electronics. To do so will make the warranty void.

15. Technical Data

Sensor	
Housing	St52, powder coated (optional stainless steel 1.4571) NW 100 / 150 / 200, flange according EN 1092-1 / PN 10
Inner pipe	Ceramic (Al ₂ O ₂)
Protection category	IP 65, ATEX: Cat. 3D
Environment temperature	Sensor pipe: -20 + 120 °C Sensor electronic: 0 + 60 °C
Max. working pressure	1 bar (optional 10 bar)
Working frequency	88 kHz
Transmitting power	Max. 2 mW
Weight	Depending to model
Accuracy	+/- 3 % (based on end of measuring range and calibrated material)
Transmitter (version field housing)	
Power supply	110 / 240 V AC, 50 Hz, 24 V DC
Power consumption	20 W 24 VA
Protection category	IP 65 according EN 60 529/10.91
Dimensions	258 x 237 x 174 (W x H x D)
Weight	Approx. 2.5 kg
Terminal clamp wire size	0.2 - 2.5 mm² [AWG 24-14]
Cable Glands	3 x M16 (4.5 - 10 mm Ø)
Alarm output	Relay with toggle switch - max. 250 V AC, 1 A
Transmitter (version 19" rack system)	
Power supply	24 V DC
Power consumption	12.5 W
Protection category	IP 30 according EN 60 529/10.91
Dimensions	19" rack system, 3HE, 28TE, L = 227 mm
Weight	Approx. 1 kg
Connection	Connector (DIN 41612). Typ B. 32-pol., connector
Alarm output	Relay NC - max. 250 V AC, 1 A
Transmitter (version DIN rail)	
Power supply	24 V DC ± 10 %
Power consumption	20 W 24 VA
Protection category	IP 40 according EN 60 529
Operating temperature	-10 +45 °C
Dimensions	23 x 90 x 118 (W x H x D)
Weight	Approx. 172 g
DIN Rail mounting	DIN 60715 TH35
Terminal clamp wire size	0.2 - 2.5 mm ² [AWG 24-14]
Current output signal	4 20 mA (0 20 mA), load < 500 Ω
Alarm output	Relay with switching contact - Max. 250 V AC, 1 A
Data backup	Flash
Additional Data	
Operating temperature	-10 +45 °C
Current outputs	3 x 4 20 mA (0 20 mA), load < 500 Ω
Digital inputs	2 x Ri 2 kΩ, 5 - 50 mA
Data storage	Flash Memory
Impulse output	Open Collector - Max. 30 V, 20 mA
USB interface	2.0
RS 485 interface	ModBus-Protocol

SWR engineering Messtechnik GmbH

Gutedelstraße 31 · 79418 Schliengen (Germany) Fon +49 7635 82 72 48-0 · Fax +49 7635 82 72 48-48 · www.swr-engineering.com